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Examples:
Decision Trees

  Support Vector Machine (SVM)
  Maximum Entropy (MaxEnt)
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Examples:
Self-Training
Co-Training
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With Unlabeled DataWithout Unlabeled Data

Why SSL?

How can unlabeled data be helpful?

Example from [Belkin et al., JMLR 2006]

Labeled 
Instances

Decision
Boundary

More accurate 
decision boundary 
in the presence of 
unlabeled instances

Unlabeled
Instances

4



Inductive vs Transductive

5



Inductive vs Transductive

Supervised
(Labeled)

Semi-supervised
(Labeled + Unlabeled)

5



Inductive vs Transductive

Supervised
(Labeled)

Semi-supervised
(Labeled + Unlabeled)

Inductive
(Generalize to
Unseen Data)

Transductive
(Doesn’t Generalize to

Unseen Data)

5



Inductive vs Transductive

SVM, 
Maximum Entropy X

Manifold 
Regularization

Label Propagation, 
MAD, MP, TACO, ...

Supervised
(Labeled)

Semi-supervised
(Labeled + Unlabeled)

Inductive
(Generalize to
Unseen Data)

Transductive
(Doesn’t Generalize to

Unseen Data)

5



Inductive vs Transductive

SVM, 
Maximum Entropy X

Manifold 
Regularization

Label Propagation, 
MAD, MP, TACO, ...

Supervised
(Labeled)

Semi-supervised
(Labeled + Unlabeled)

Inductive
(Generalize to
Unseen Data)

Transductive
(Doesn’t Generalize to

Unseen Data)

5



Inductive vs Transductive

SVM, 
Maximum Entropy X

Manifold 
Regularization

Label Propagation, 
MAD, MP, TACO, ...

Supervised
(Labeled)

Semi-supervised
(Labeled + Unlabeled)

Inductive
(Generalize to
Unseen Data)

Transductive
(Doesn’t Generalize to

Unseen Data)

5



Inductive vs Transductive

SVM, 
Maximum Entropy X

Manifold 
Regularization

Label Propagation, 
MAD, MP, TACO, ...

Supervised
(Labeled)

Semi-supervised
(Labeled + Unlabeled)

Inductive
(Generalize to
Unseen Data)

Transductive
(Doesn’t Generalize to

Unseen Data)

5



Inductive vs Transductive

SVM, 
Maximum Entropy X

Manifold 
Regularization

Label Propagation, 
MAD, MP, TACO, ...

Supervised
(Labeled)

Semi-supervised
(Labeled + Unlabeled)

Inductive
(Generalize to
Unseen Data)

Transductive
(Doesn’t Generalize to

Unseen Data)

Most Graph SSL algorithms are non-parametric 
(i.e., # parameters grows with data size)

5



Inductive vs Transductive

SVM, 
Maximum Entropy X

Manifold 
Regularization

Label Propagation, 
MAD, MP, TACO, ...

Supervised
(Labeled)

Semi-supervised
(Labeled + Unlabeled)

Inductive
(Generalize to
Unseen Data)

Transductive
(Doesn’t Generalize to

Unseen Data)

Most Graph SSL algorithms are non-parametric 
(i.e., # parameters grows with data size)

5

Focus of this 
tutorial



Inductive vs Transductive

SVM, 
Maximum Entropy X

Manifold 
Regularization

Label Propagation, 
MAD, MP, TACO, ...

Supervised
(Labeled)

Semi-supervised
(Labeled + Unlabeled)

Inductive
(Generalize to
Unseen Data)

Transductive
(Doesn’t Generalize to

Unseen Data)

See Chapter 25 of SSL Book: http://olivier.chapelle.cc/ssl-book/discussion.pdf

Most Graph SSL algorithms are non-parametric 
(i.e., # parameters grows with data size)
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Focus of this 
tutorial

http://olivier.chapelle.cc/ssl-book/discussion.pdf
http://olivier.chapelle.cc/ssl-book/discussion.pdf
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Why Graph-based SSL?

• Some datasets are naturally represented by a graph

• web, citation network, social network, ...

• Uniform representation for heterogeneous data

• Easily parallelizable, scalable to large data

• Effective in practice
Graph SSL

Supervised

Non-Graph SSL

Text Classification
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Graph-based SSL

• Two stages
• Graph construction (if not already present)
• Label Inference

Smoothness Assumption 
If two instances are similar 

according to the graph, then 
output labels should be similar
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Graph Construction

• Neighborhood Methods

• k-NN Graph Construction (k-NNG)

• e-Neighborhood Method

• Metric Learning

• Other approaches
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Issues with k-NNG

• Results in irregular graphs
• some nodes may end up with 

higher degree than other nodes

Node of degree 4 in
the k-NNG (k = 1)

13

• Not scalable (quadratic)
• Results in an asymmetric graph

• b is the closest neighbor of a, but not 
the other way

a b c
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Issues with e-Neighborhood

• Not scalable

• Sensitive to value of e : not invariant to scaling 

• Fragmented Graph: disconnected components

Figure from [Jebara et al., ICML 2009]

e-NeighborhoodData

Disconnected
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Graph Construction using 
Metric Learning

• Supervised Metric Learning

• ITML [Kulis et al., ICML 2007]

• LMNN [Weinberger and Saul, JMLR 2009]

• Semi-supervised Metric Learning

• IDML [Dhillon et al., UPenn TR 2010]

xi xj
wij ∝ exp(−DA(xi, xj))

Estimated using 
Mahalanobis metric 
learning algorithms

DA(xi, xj) = (xi − xj)
TA(xi − xj)
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Benefits of Metric Learning for
Graph Construction

Careful graph construction is critical!
[Dhillon et al., UPenn TR 2010]

Graph constructed 
using supervised 
metric learning

0

0.125

0.25

0.375

0.5

Amazon Newsgroups Reuters Enron A Text

Original RP PCA ITML IDML

Er
ro

r

100 seed and1400 test instances, all inferences using LP

Graph constructed using 
semi-supervised 
metric learning
[Dhillon et al., 2010]
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Other Graph Construction 
Approaches

• Local Reconstruction

• Linear Neighborhood [Wang and Zhang, ICML 2005]

• Regular Graph: b-matching [Jebara et al., ICML 2008]

• Fitting Graph to Vector Data [Daitch et al., ICML 2009]

• Graph Kernels

• [Zhu et al., NIPS 2005]
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Outline

• Motivation

• Graph Construction

• Inference Methods

• Scalability

• Applications

• Conclusion & Future Work

- Label Propagation
- Modified Adsorption
- Transduction with Confidence
- Manifold Regularization
- Measure Propagation
- Sparse Label Propagation
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• Laplacian (un-normalized) of a graph:
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Graph Laplacian (contd.)
• L is positive semi-definite (assuming non-negative weights)

• Smoothness of prediction f over the graph in 
terms of the Laplacian:

1
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Lg = λg

gTLg = λgT g

gTLg = λ

Relationship between Eigenvalues of 
the Laplacian and Smoothness

21

Eigenvalue of LEigenvector of L

= 1, as eigenvectors 
are are orthonormal

If an eigenvector is used to 
classify nodes, then the 

corresponding eigenvalue gives 
the measure of non-smoothness

Measure of 
Non-Smoothness
(previous slide)



Spectrum of the Graph Laplacian

Figure from [Zhu et al., 2005]

Number of
connected

components = 
Number of 0 
eigenvalues

Constant within
component

Higher Eigenvalue,
Irregular Eigenvector,

Less smoothness
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Notations
Seed Scores

Estimated 
Scores

Label Priors

Ŷv,l : score of estimated label l on node v 

Yv,l : score of seed label l on node v 

Rv,l : regularization target for label l on node v 

S : seed node indicator (diagonal matrix) 

v

Wuv : weight of edge (u, v) in the graph
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Notations
Seed Scores

Estimated 
Scores

Label 
Regularization

Ŷv,l : score of estimated label l on node v 

Yv,l : score of seed label l on node v 

Rv,l : regularization target for label l on node v 

S : seed node indicator (diagonal matrix) 

v

Wuv : weight of edge (u, v) in the graph
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LP-ZGL [Zhu et al., ICML 2003]
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Ŷ
T
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LP-ZGL [Zhu et al., ICML 2003]
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Ŷ
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Wuv(Ŷul − Ŷvl)
2

Yul = Ŷul, ∀Suu = 1such that

Smooth

Match Seeds 
(hard)

• Smoothness

•  two nodes connected by 
an edge with high weight 
should be assigned similar 
labels

• Solution satisfies harmonic 
property

=

m∑

l=1

Ŷ
T
l LŶl

Graph
Laplacian
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Two Related Views
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Label Diffusion
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Random Walk View

UV

what next? Starting node
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• Continue walk with probability

• Assign V’s seed label to U with probability

• Abandon random walk with probability 
• assign U a dummy label 

p
cont

v

p
inj
v

p
abnd
v

Random Walk View

UV

what next? Starting node
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• do not allow propagation/walk through them
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Discounting Nodes

• Certain nodes can be unreliable (e.g., high degree nodes)

• do not allow propagation/walk through them

• Solution: increase abandon probability on such 
nodes:

p
abnd
v ∝ degree(v)

30



Redefining Matrices

W
′

uv
= pcont

u
×Wuv

Suu =

√

pinju

Ru! = pabndu
, and 0 for non-dummy labels

Dummy	
  Label

New	
  Edge
Weight

31



Modified Adsorption (MAD)
[Talukdar and Crammer, ECML 2009]
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[Talukdar and Crammer, ECML 2009]

argmin
Ŷ

m+1�

l=1

�
�SŶ l − SY l�2 + µ1

�

u,v

Muv(Ŷ ul − Ŷ vl)
2 + µ2�Ŷ l −Rl�2

�

• m labels, +1 dummy label

• M = W� +W is the symmetrized weight matrix

• Ŷ vl: weight of label l on node v

• Y vl: seed weight for label l on node v

• S: diagonal matrix, nonzero for seed nodes

• Rvl: regularization target for label l on node v

Seed Scores

Estimated
Scores

Label Priorsv

′′
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2 + µ2�Ŷ l −Rl�2

�

• m labels, +1 dummy label

• M = W� +W is the symmetrized weight matrix
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Ŷ

m+1�

l=1

�
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• m labels, +1 dummy label
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2 + µ2�Ŷ l −Rl�2

�

• m labels, +1 dummy label

• M = W� +W is the symmetrized weight matrix

• Ŷ vl: weight of label l on node v

• Y vl: seed weight for label l on node v

• S: diagonal matrix, nonzero for seed nodes

• Rvl: regularization target for label l on node v

Match Seeds (soft) Smooth
Match Priors
(Regularizer)

Seed Scores

Estimated
Scores

Label Priorsv

MAD has extra regularization compared to LP-ZGL 
[Zhu et al, ICML 03]; similar to QC [Bengio et al, 2006]

′′for none-of-the-above label

MAD’s Objective 
is Convex
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• Can be solved using matrix inversion (like in LP)

• but matrix inversion is expensive
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Solving MAD Objective

• Can be solved using matrix inversion (like in LP)

• but matrix inversion is expensive

• Instead solved exactly using a system of linear 
equations (Ax = b)

• solved using Jacobi iterations

• results in iterative updates

• guaranteed convergence

• see [Bengio et al., 2006] and                                          
[Talukdar and Crammer, ECML 2009] for details
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Solving MAD using Iterative Updates

Inputs Y ,R : |V | × (|L|+ 1), W : |V | × |V |, S : |V | × |V | diagonal
Ŷ ← Y
M = W +W�

Zv ← Svv + µ1
�

u �=v Mvu + µ2 ∀v ∈ V
repeat

for all v ∈ V do
Ŷ v ← 1

Zv

�
(SY )v + µ1Mv·Ŷ + µ2Rv

�

end for
until convergence

′′

Seed Prior

0.75

0.05

0.60

Current label 
estimate on ba b

c

v
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Ŷ ← Y
M = W +W�

Zv ← Svv + µ1
�

u �=v Mvu + µ2 ∀v ∈ V
repeat

for all v ∈ V do
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• Importance of a node can be discounted
• Easily Parallelizable: Scalable (more later)



When is MAD most effective?
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MAD is particularly effective in denser graphs, where 
there is greater need for regularization.
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Transduction Algorithm with Confidence 
(TACO) [Orbach and Crammer, ECML 2012]
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•Neighborhood	
  disagreement	
  =>	
  low	
  confidence

•Lower	
  the	
  effect	
  of	
  poorly	
  es=mated	
  (low	
  
confidence)	
  scores
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TACO Objective
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TACO Objective

• Convex objective
• Iterative solution
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TACO: Iterative Algorithm
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TACO: Score Update

410.3

0.3

0.35 0.9

- Average Neighbors
- Consider Confidence
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TACO: Confidence Update

420.3

0.3

0.9

Confidence is monotonic
in neighbors
“disagreement”
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Manifold Regularization
[Belkin et al., JMLR 2006]

f∗ = argmin
f

1

l

l�

i=1

V (yi, f(xi)) + β fTLf + γ||f ||2K
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Manifold Regularization
[Belkin et al., JMLR 2006]

Loss Function
(e.g., soft margin)

Laplacian of graph  
over labeled and 
unlabeled data

Trains an inductive classifier which can generalize 
to unseen instances 

Training Data
Loss

Smoothness 
Regularizer

Regularizer
(e.g., L2)

f∗ = argmin
f

1
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l�

i=1

V (yi, f(xi)) + β fTLf + γ||f ||2K
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argmin
{pi}

l�

i=1

DKL(ri||pi) + µ

�

i,j

wijDKL(pi||pj)− ν

n�

i=1

H(pi)

Measure Propagation (MP)
[Subramanya and Bilmes, EMNLP 2008, NIPS 2009, JMLR 2011]

CKL

s.t.
�

y

pi(y) = 1, pi(y) ≥ 0, ∀y, i
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Divergence on
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Smoothness
(divergence across edge)

Entropic Regularizer

KL Divergence

DKL(pi||pj) =
�

y

pi(y) log
pi(y)

pj(y)

Entropy
H(pi) = −

�

y

pi(y) log pi(y)

Seed and estimated label 
distributions (normalized) 

on node i

CKL is convex (with non-negative edge weights and hyper-parameters)

MP is related to Information Regularization [Corduneanu and Jaakkola, 2003]

Normalization Constraint

CKL

s.t.
�

y

pi(y) = 1, pi(y) ≥ 0, ∀y, i
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Solving MP Objective

• For ease of optimization, reformulate MP objective:

arg min
{pi,qi}

l�

i=1

DKL(ri||qi) + µ

�

i,j

w
�

ijDKL(pi||qj)− ν

n�

i=1

H(pi)

CMP
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Solving MP Objective

• For ease of optimization, reformulate MP objective:

arg min
{pi,qi}
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DKL(ri||qi) + µ
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i,j
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ijDKL(pi||qj)− ν

n�

i=1

H(pi)

   w
�

ij = wij + α× δ(i, j)New probability 
measure, one for each 

vertex, similar to pi

CMP

Encourages agreement 
between pi and qi 

   

CMP is also convex
(with non-negative edge weights and hyper-parameters)  

CMP can be solved using Alternating Minimization (AM)
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Q2

Alternating Minimization

Q0

Q1

P1
P2P3

CMP satisfies the necessary conditions for AM to 
converge [Subramanya and Bilmes, JMLR 2011]
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Performance of SSL Algorithms

Comparison of accuracies for different number of labeled
samples across COIL (6 classes) and OPT (10 classes) datasets
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Performance of SSL Algorithms

Comparison of accuracies for different number of labeled
samples across COIL (6 classes) and OPT (10 classes) datasets

Graph SSL can be effective when the data satisfies manifold 
assumption. More results and discussion in Chapter 21 of 

the SSL Book (Chapelle et al.)
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Background: Factor Graphs
[Kschischang et al., 2001]

Factor Graph
• bipartite graph
• variable nodes (e.g., label distribution on a node)
• factor nodes: fitness function over variable assignment

Distribution over all variables’ values

Variable Nodes (V)

Factor Nodes (F)

variables connected 
to factor f52



Factor Graph Interpretation of 
Graph SSL [Zhu et al., ICML 2003] [Das and Smith, NAACL 2012]

min Edge Smoothness 
Loss

Regularization 
Loss + +Seed Matching 

Loss (if any)

3-term Graph SSL Objective (common to many algorithms)
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Factor Graph Interpretation
[Zhu et al., ICML 2003][Das and Smith, NAACL 2012]

r1 r2 

r3 

r4 

q1 q2 

q4 

q3 

q9264 

q9265 

q9266 

q9267 q9268 q9269 q9270 1. Factor encouraging 
agreement on seed 

labels

2. Smoothness
Factor

3. Unary factor for 
regularization
logψt(qt)
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logψt(qt) =
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Label Propagation with Sparsity

Enforce through sparsity inducing unary factor

logψt(qt) =

logψt(qt) =

Lasso (Tibshirani, 1996) 

Elitist Lasso (Kowalski and Torrésani, 2009)

For more details, see [Das and Smith, NAACL 2012]
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Other Graph-SSL Methods

• Spectral Graph Transduction [Joachims, ICML 2003]

• SSL on Directed Graphs
• [Zhou et al, NIPS 2005], [Zhou et al., ICML 2005]

• Learning with dissimilarity edges
• [Goldberg et al., AISTATS 2007]

• Learning to order: GraphOrder [Talukdar et al., CIKM 2012] 

• Graph Transduction using Alternating Minimization
• [Wang et al., ICML 2008]

• Graph as regularizer for Multi-Layered Perceptron
• [Karlen et al., ICML 2008], [Malkin et al., Interspeech 2009]
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More (Unlabeled) Data is Better Data

Graph with 
120m 
vertices

 Challenges with large unlabeled data:

• Constructing graph from large data
• Scalable inference over large graphs

[Subramanya & Bilmes, JMLR 2011]58
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• Brute force (exact) k-NNG too expensive 
(quadratic)

• Approximate nearest neighbor using kd-
tree [Friedman et al., 1977, also see http://

www.cs.umd.edu/˜mount/]

Scalability Issues (I)
Graph Construction
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• Sub-sample the data

• Construct graph over a subset of a unlabeled 
data [Delalleau et al., AISTATS 2005]

• Sparse Grids [Garcke & Griebel, KDD 2001]
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• Sub-sample the data

• Construct graph over a subset of a unlabeled 
data [Delalleau et al., AISTATS 2005]

• Sparse Grids [Garcke & Griebel, KDD 2001]

• How about using more computation? (next section)

• Symmetric multi-processor (SMP)

• Distributed Computer

Scalability Issues (II)
Label Inference
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- Scalability Issues
- Node reordering
      [Subramanya & Bilmes, JMLR 2011;
       Bilmes & Subramanya, 2011]

- MapReduce Parallelization
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Speed-up on SMP

[Subramanya & Bilmes, JMLR, 2011]

• Graph with 1.4M nodes
• SMP with 16 cores and 
128GB of RAM
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Speed-up on SMP
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spent when using 
1 processor to 

time spent using n 
processors

[Subramanya & Bilmes, JMLR, 2011]

• Graph with 1.4M nodes
• SMP with 16 cores and 
128GB of RAM
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Speed-up on SMP

Ratio of time 
spent when using 
1 processor to 

time spent using n 
processors

Cache miss?

[Subramanya & Bilmes, JMLR, 2011]

• Graph with 1.4M nodes
• SMP with 16 cores and 
128GB of RAM
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Node Reordering Algorithm

Input: Graph G = (V, E)

Result: Node ordered graph

1. Select an arbitrary node v

2. while unselected nodes remain do

2.1. select an unselected node v` from among the 
neighbors’ neighbors of v that has maximum 
overlap with v` neighbors

2.2. mark v` as selected

2.3. set v to v`

[Subramanya & Bilmes, JMLR, 2011]66



Node Reordering Algorithm

Input: Graph G = (V, E)

Result: Node ordered graph

1. Select an arbitrary node v

2. while unselected nodes remain do

2.1. select an unselected node v` from among the 
neighbors’ neighbors of v that has maximum 
overlap with v` neighbors

2.2. mark v` as selected

2.3. set v to v`

Exhaustive 
for sparse 

(e.g., k-NN) 
graphs

[Subramanya & Bilmes, JMLR, 2011]66
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Speed-up on SMP after Node Ordering

[Subramanya & Bilmes, JMLR, 2011]68



Distributed Processing

• Maximize overlap between consecutive nodes 
within the same machine

• Minimize overlap across machines (reduce inter 
machine communication)
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Distributed Processing Results

[Bilmes & Subramanya, 2011]72
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MapReduce Implementation of MAD
• Map

• Each node send its current 
label assignments to its 
neighbors
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v
• Reduce

• Each node updates its own label 
assignment using messages 
received from neighbors, and its 
own information (e.g., seed 
labels, reg. penalties etc.)

• Repeat until convergence

Code in Junto Label Propagation Toolkit

(includes Hadoop-based implementation)

http://code.google.com/p/junto/
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Problem Description & Motivation

• Given a “frame” of speech classify it into one 
of n phones

• Training supervised models requires large 
amounts of labeled data (phone classification 
in resource-scarce languages)
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TIMIT

• Corpus of read speech

• Broadband recordings of 630 speakers of 8 major 
dialects of American English

• Each speaker has read 10 sentences

• Includes time-aligned phonetic transcriptions

• Phone set has 61 phones [Lee & Hon, 89]

• mapped down to 48 phones for modeling

• further mapped down to 39 phones for scoring

77



Feature Extraction

78



Feature Extraction

78

MFCC

Hamming 
Window

 25ms @ 100 Hz



Feature Extraction

78

MFCC

Hamming 
Window

 25ms @ 100 Hz

Delta



Feature Extraction

78

MFCC

Hamming 
Window

 25ms @ 100 Hz

Delta .... ....

ti



Feature Extraction

78

MFCC

Hamming 
Window

 25ms @ 100 Hz

Delta .... ....

ti



Feature Extraction

78

MFCC

Hamming 
Window

 25ms @ 100 Hz

Delta .... ....

ti

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.



Graph Construction

79

TIMIT 
Training Set

TIMIT 
Development 

Set



Graph Construction

79

TIMIT 
Training Set

TIMIT 
Development 

Set

+



Graph Construction

79

TIMIT 
Training Set

TIMIT 
Development 

Set

+ k-NN 
Graph



Graph Construction

79

TIMIT 
Training Set

TIMIT 
Development 

Set

+ k-NN 
Graph

wij = exp{−(xi − xj)TΣ−1(xi − xj)}



Graph Construction

79

TIMIT 
Training Set

TIMIT 
Development 

Set

+ k-NN 
Graph

- k = 10
- Graph with 
about 1.4 M nodes

wij = exp{−(xi − xj)TΣ−1(xi − xj)}



Graph Construction
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TIMIT 
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TIMIT 
Development 

Set

+ k-NN 
Graph

- k = 10
- Graph with 
about 1.4 M nodes

Labels not used during graph construction

wij = exp{−(xi − xj)TΣ−1(xi − xj)}
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84

65

67.25

69.5

71.75

74

10% 50% 100%

MLP MP MAD p-MP

[Liu & Kirchoff, UW-EE TR 2012]

• Take advantage of labeled data during graph construction
• Regularize towards prior (when available)
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Switchboard Phonetic Annotation

• Switchboard corpus consists of about 300 hours of 
conversational speech.

• Less reliable automatically generated phone-level 
annotations [Deshmukh et al., 1998]

• Switchboard transcription project (STP) 
[Greenberg, 1995]

•Manual phonetic annotation

•Only about 75 minutes of data annotated
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+ k-NN 
Graph

- kd-tree
- k = 10
- Graph with about 
120 M nodes
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Results

Graph with 
120m 
vertices

[Subramanya & Bilmes, JMLR 2011]87
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• Given a document (e.g., web page, news 
article), assign it to a fixed number of 
semantic categories (e.g., sports, politics, 
entertainment)

• Multi-label problem

• Training supervised models requires large 
amounts of labeled data [Dumais et al., 1998]
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•Reuters [Lewis, et al., 1978]

• Newswire

• About 20K document with 135 categories. Use 
top 10 categories (e.g., “earnings”, “acquistions”, 
“wheat”, “interest”) and label the remaining as 
“other”

•WebKB [Bekkerman, et al., 2003]

• 8K webpages from 4 academic domains

• Categories include “course”, “department”, 
“faculty” and “project”
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throughout the 
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January and 
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prospects coming 
temporao, ...

shower continu 
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Stop-word 
Removal Stemming
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Bag-of-words[Lewis, et al., 1978]
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Results

Average 
PRBEP

SVM TSVM SGT LP MP MAD
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WebKB 23.0 29.2 36.8 41.2 51.9 53.7

Precision-recall break even point (PRBEP)
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Support 
Vector 

Machine 
(Supervised)

Transductive 
SVM 

[Joachims 1999]

Spectral 
Graph 

Transduction 
(SGT) 

[Joachims 2003]

Label Propagation 
[Zhu & Ghahramani 2002]

Measure Propagation 
[Subramanya & Bilmes 2008]

Modified Adsorption
[Talukdar & Crammer 2009]
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Results on WebKB
Modified Adsorption (MAD) 

[Talukdar & Crammer 2009]

• More labeled data => Better Performance
• Unnormalized distributions (scores) more 
suitable for multi-label problems (MAD 
outperforms other approaches)

[Subramanya & Bilmes, EMNLP 2008]93
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Problem description

• Dialog acts (DA) reflect the function that 
utterances serve in discourse

• Applications in automatic speech recognition 
(ASR), machine translation (MT) & natural language 
processing (NLP)
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Switchboard DA Corpus

• Switchboard dialog act (DA) tagging project 
[Jurafsky, et al., 1997] 

• Manually labeled 1155 conversations (about 200k sentences)

• Example labels: question, answer, backchannel, agreement... (total 
of 42 different DAs)

• Use top 18 DAs (about 185k sentences)
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Graph Construction

• Bigram & trigram TFIDF

• Cosine similarity

• k-NN graph
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SWB DA Tagging Results

• Baseline 
performance: 84.2% 
[Ji & Bilmes, 2005]
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Dihana Corpus

• Computer-human dialogues

• answering telephone queries about train services in Spain

• about 900 dialogues

• topics include timetables, fares and services

• 225 speakers

• Standard train/test set (16k/7.5k sentences)

• Number of labels = 72
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Dihana Results

• Results for classifying 
user turns

• Baseline 
Performance: 76.4%
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Outline

• Motivation

• Graph Construction

• Inference Methods

• Scalability

• Applications

• Conclusion & Future Work

- Phone Classification
- Text Categorization
- Dialog Act Tagging
- Statistical Machine Translation
    [Alexandrescu & Kirchoff, NAACL 2009]

- POS Tagging
- MultiLingual POS Tagging
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Problem Description

• Phrase-based statistical machine translation (SMT)

• Sentences are translated in isolation
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• What we want to do -

• exploit similarity between sentences

• Input consists of variable-length word strings

• Output space is structured (number of possible 
“labels” is very large)
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Graph Construction (I)
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{(s1, t1), . . . , (sl, tl)}Labeled data:

Unlabeled data (test set): {sl+1, . . . , sn}

(si, ti)

Encodes a 
source & 

target 
sentence

(sj , tj)wij?

• How do we compute similarity
• What about the test set?
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{(s1, t1), . . . , (sl, tl)}Labeled data:
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First pass 
Decoder
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Corpora

• IWSLT 2007 task

• Italian-to-English (IE) & Arabic-to-English (AE) travel tasks

• Each task has train/dev/eval sets

• Baseline: Standard phrase-based SMT based on a 
log-linear model.  Yields state-of-the-art 
performance.

• Results are measured using BLEU score and Phrase 
error rate (PER) [Papineni et al., ACL 2002]
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Geometric mean based averaging worked the best
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Outline

• Motivation

• Graph Construction

• Inference Methods

• Scalability

• Applications

• Conclusion & Future Work

- Phone Classification
- Text Categorization
- Dialog Act Tagging
- Statistical Machine Translation
- POS Tagging                                            
    [Subramanya et. al., EMNLP 2008]

- MultiLingual POS Tagging
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Approach (I)
1. Train a CRF on labeled data
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Approach (V)

1. Train a CRF on labeled data
2. While not converged do:

2.1. Posterior decode unlabeled data using CRF
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2.3. Graph propagation
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2.5. Retrain CRF on labeled & automatically 
labeled unlabeled data
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Viterbi Decoding : Intuition
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KL Projection
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q̂(y|x)
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Space of all 
distributions 
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Converged 
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Corpora

• Source Domain (labeled): Wall Street Journal 
(WSJ) section of the Penn Treebank.

•  Target Domain:

•QuestionBank: 4000 labeled sentences

•Penn BioTreebank: 1061 labeled sentences
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Graph Construction: Question Bank

WSJ Unlabeled Data

Similarity Graph 
Construction

PMI 
Statistics

Labels are not used 
during graph 
construction

10 million questions collected 
from anonymized Internet 

Search Queries
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Graph Construction: Bio

WSJ Unlabeled Data

Similarity Graph 
Construction

PMI 
Statistics

Labels are not used 
during graph 
construction

100,000 sentences chosen 
by searching MEDLINE 

(Blitzer et al. 2006)
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Baseline (Supervised)

•Features: word identity, suffixes, prefixes & 
special character detectors (dashes, digits, 
etc.).

•Achieves 97.17% accuracy on WSJ 
development set.

Not the same 
as features used 

using graph 
construction
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Results

Questions Bio

Baseline 83.8 86.2

Self-training 84.0 87.1

Semi-supervised 
CRF

86.8 87.6
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Analysis

Questions Bio

percentage of unlabeled trigrams not 
connected to and any labeled trigram 12.4 46.8

average path length between an unlabeled 
trigram  and its nearest labeled trigram 9.4 22.4
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Analysis

Questions Bio

percentage of unlabeled trigrams not 
connected to and any labeled trigram 12.4 46.8

average path length between an unlabeled 
trigram  and its nearest labeled trigram 9.4 22.4

Sparse 
Graph

130



Analysis

• Pros

• Inductive

• Produces a CRF (standard CRF inference 
infrastructure may be used)

• Issues

• Graph construction

• Graph is not integrated with CRF training
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Outline

• Motivation

• Graph Construction

• Inference Methods

• Scalability

• Applications

• Conclusion & Future Work

- Phone Classification
- Text Categorization
- Dialog Act Tagging
- Statistical Machine Translation
- POS Tagging
- MultiLingual POS Tagging
      [Das & Petrov, ACL 2011]
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• Supervised POS taggers for English have accuracies 
in the high 90’s for most domains
• By comparison taggers in other languages are not as 
accurate
• Performance ranges from between 60 - 80%

Model in 
resource-rich 
language (e.g., 

English)

Model in 
resource-poor 

language

Transfer 
Knowledge
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Cross-Lingual Projection

The food at Google is good .
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Cross-Lingual Projection

The food at Google is good .
DET NOUN ADP NOUN VERB ADJ .

Das Essen ist gut bei Google .

Automatic alignments from translation data
(available for more than 50 languages)

96% Accuracy
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Cross-Lingual Projection

Das Essen ist gut bei Google.

The
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NOUN

is
VERB

good
ADJ

.

.
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Cross-Lingual Projection Results

Danish Dutch German Greek Italian Portuguese Spanish Swedish Average

Feature-
HMM 69.1 65.1 81.3 71.8 68.1 78.4 80.2 70.1 73.0

Feature-HMM [Berg-Kirkpatrick, NAACL 2010]137
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Direct 
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Graph Regularization

ist gut bei

ist lebhafter bei
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gutem Essen zugetan
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Results

Danish Dutch German Greek Italian Portugese Spanish Swedish Average
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Danish Dutch German Greek Italian Portugese Spanish Swedish Average

Feature-
HMM 69.1 65.1 81.3 71.8 68.1 78.4 80.2 70.1 73.0

Direct 
Projection 73.6 77.0 83.2 79.3 79.7 82.6 80.1 74.7 78.8

Oracle 
(Supervised) 96.9 94.9 98.2 97.8 95.8 97.2 96.8 94.8 96.6
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When to use Graph-based SSL 
and which method?

• When input data itself is a graph (relational data)

• or, when the data is expected to lie on a manifold

• MAD, Quadratic Criteria (QC)

• when labels are not mutually exclusive

• MADDL: when label similarities are known

• Measure Propagation (MP)

• for probabilistic interpretation

• Manifold Regularization

• for generalization to unseen data (induction)
145



Graph-based SSL: Summary

146



Graph-based SSL: Summary

• Provide flexible representation

• for both IID and relational data

146



Graph-based SSL: Summary

• Provide flexible representation

• for both IID and relational data

• Graph construction can be key

146



Graph-based SSL: Summary

• Provide flexible representation

• for both IID and relational data

• Graph construction can be key

• Scalable: Node Reordering and MapReduce

146



Graph-based SSL: Summary

• Provide flexible representation

• for both IID and relational data

• Graph construction can be key

• Scalable: Node Reordering and MapReduce

• Can handle labeled as well as unlabeled data

146



Graph-based SSL: Summary

• Provide flexible representation

• for both IID and relational data

• Graph construction can be key

• Scalable: Node Reordering and MapReduce

• Can handle labeled as well as unlabeled data

• Can handle multi class, multi label settings

146



Graph-based SSL: Summary

• Provide flexible representation

• for both IID and relational data

• Graph construction can be key

• Scalable: Node Reordering and MapReduce

• Can handle labeled as well as unlabeled data

• Can handle multi class, multi label settings

• Effective in practice
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Open Challenges

• Graph-based SSL for Structured Prediction

• Algorithms: Combining Inductive and graph-based methods

• Applications: Constituency and dependency parsing, Coreference

• Scalable graph construction, especially with      
multi-modal data

• Extensions with other loss functions, sparsity, etc.

• Using side information
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Thank You!

Web: http://graph-ssl.wikidot.com/
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