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Algorithm

Examples:
Decision Trees

Support Vector Machine (SVM)
Maximum Entropy (MaxEnt)




Semi-Supervised Learning (SSL)

Labeled Learning
@ g Algorithm Model

A Lot of
Unlabeled Data




Semi-Supervised Learning (SSL)

L abeled Learning a
@ g Algorithm Model
A Lot of Examples:
Unlabeled Data Self-Training

Co-Training




Why SSL?

How can unlabeled data be helpful?



Why SSL?

How can unlabeled data be helpful?

A
¢

Without Unlabeled Data



Why SSL?

How can unlabeled data be helpful?

Labeled
Instances ‘-,

Without Unlabeled Data



Why SSL?

How can unlabeled data be helpful?

Labeled
Instances s,
o Tea
E S ®
*¢
Decision
Boundary

Without Unlabeled Data



Why SSL?

How can unlabeled data be helpful?

Labeled
Instances  *%:-..

Decision | k(\, j

Boundary | “emm g

Without Unlabeled Data With Unlabeled Data



Why SSL?

How can unlabeled data be helpful?

Labeled
Instances  *%:-..

| ( )‘ P+
Decision | Qj

.h. L 3
~
-,

Boundary | o | Unlabeled
Instances

Without Unlabeled Data With Unlabeled Data



Why SSL?

How can unlabeled data be helpful?

More accurate
decision boundary

Labeled in the presence of
Instances unlabeled instances
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| é )‘ AN
Decision | j
Boundary | e ® | Unlabeled
Instances
Without Unlabeled Data With Unlabeled Data

Example from [Belkin et al., JMLR 2006]
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Inductive vs Transductive

Supervised
(Labeled)

Semi-supervised
(Labeled + Unlabeled)

Inductive
(Generalize to
Unseen Data)

Transductive
(Doesn’t Generalize to
Unseen Data)

SVM,
Maximum Entropy

Manifold
Regularization

. Focus of this

tutorial

Label Propagation,

MAD, MP, TACO, ...

Most Graph SSL algorithms are non-parametric
(i.e., # parameters grows with data size)

See Chapter 25 of SSL Book: http://olivier.chapelle.cc/ssl-book/discussion.pdf
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Why Graph-based SSL?

® Some datasets are naturally represented by a graph

® web, citation network, social network, ...

® Uniform representation for heterogeneous data
® FEasily parallelizable, scalable to large data

® Effective in practice |
-* Graph SSL |

T*- Non-Graph SSL l

2

" Supervised |

Text Classification
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Number of Labeled Documents
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Graph-based SSL

Smoothness Assumption
If two instances are similar X
according to the graph, then N

output labels should be similar

X;  sim(x;,X;)

* Two stages
* Graph construction (if not already present)
* Label Inference
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Graph Construction

® Neighborhood Methods

® k-NN Graph Construction (k-NNG)
® e-Neighborhood Method

® Metric Learning

® Other approaches
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Issues with k-NNG

* Not scalable (quadratic)
* Results in an asymmetric graph ©, b ©

* b is the closest neighbor of a, but not
the other way

* Results in irregular graphs O

* some nodes may end up with

higher degree than other nodes O ‘ O
Vf\

O Node of degree 4 in
the k-NNG (k= 1)
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Issues with ¢~-Neighborhood

* Not scalable

* Sensitive to value of e : not invariant to scaling

* Fragmented Graph: disconnected components

Data
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-
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.
( 0 0

Disconnected

e-Neighborhood

Figure from [Jebara et al., ICML 2009]
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Da(wi wj) = (v — x;)" Alw; — ;)

Estimated using
Mahalanobis metric
learning algorithms




Graph Construction using
Metric Learning

@ w;; o< exp(—Da(x;, x;)) @

® Supervised Metric Learning

 ITML [Kulis et al., ICML 2007] Estimated using

learning algorithms

Mahalanobis metric
e | MNN [Weinberger and Saul, JMLR 2009]

® Semi-supervised Metric Learning

e |DML [Dhillon et al., UPenn TR 2010]

|5



Benefits of Metric Learning for
Graph Construction



Error

Benefits of Metric Learning for
Graph Construction

os M Original [ RP PCA [ ITML IDML
0.375
0.25 — —
0.125 l : - _ _
i

Amazon Newsgroups Reuters Enron A Text

100 seed and 1400 test instances, all inferences using LP



Benefits of Metric Learning for
Graph Construction

0.5 B Original [ RP PCA [ ITML IDML
y A

Graph constructed | |
using supervised |/
metric learning

0.375

0.25

Error

0.125

Amazon Newsgroups Reuters Enron A Text

100 seed and 1400 test instances, all inferences using LP



Benefits of Metric Learning for
Graph Construction

[ ] Original W RP PCA 5 ITML IDML »
0.5 A .

Graph constructed Graph constructed using
using supervised semi-supervised
~ metric learning

74
4
24
4

metric learning

0.375 [Dhillon et al., 2010]
G
O 025
|
LLl
0.125

Amazon Newsgroups Reuters Enron A Text

100 seed and 1400 test instances, all inferences using LP

16 [Dhillon et al., UPenn TR 2010]



Benefits of Metric Learning for
Graph Construction

B Original [ RP PCA [ ITML IDML »
0.5 A -
Graph constructed Graph constructed using
using supervised semi-supervised

0.375 e e ' quaerfﬁilirl]e::r:ﬁgzo 10]
0.25 -
0.125 ' |
0

Amazon Newsgroups Reuters Enron A Text

4
l
I

Error

100 seed and 1400 test instances, all inferences using LP

| Careful graph construction is critical! |

16 [Dhillon et al., UPenn TR 2010]




Other Graph Construction
Approaches

® | ocal Reconstruction

® Linear Neighborhood [Wang and Zhang, ICML 2005]
® Regular Graph: b-matching [Jebara et al., ICML 2008]
e Fitting Graph to Vector Data [Daitch et al., ICML 2009]

® Graph Kernels
® [Zhu et al,, NIPS 2005]
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® Conclusion & Future Work

18



Graph Laplacian



Graph Laplacian

* Laplacian (un-normalized) of a graph:

L =D —W,where Dy = » W;j, Dyjz =0

J



Graph Laplacian

* Laplacian (un-normalized) of a graph:

L =D —W,where Dy = » W;j, Dyjz =0




Graph Laplacian

* Laplacian (un-normalized) of a graph:

L =D —W,where Dy = » W;j, Dyjz =0

a b ¢ d
a3 1 -2 0
bl -1 4 -3 0
.12 3 6 -
410 0 -1 1

\ J
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Graph Laplacian (contd.)

| is positive semi-definite (assuming non-negative weights)

* Smoothness of prediction f over the graph in
terms of the Laplacian:

Measure of
Non-Smoothness

|
“
“
-

Vector of scores for

single label on nodes

YTLf = ZWw — £3)3

25

T = [1113] ff=11105 25]

fTLf =4  Smooth ' fTLf — 983  Not Smooth |
20
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Eigenvector of L '~~\~ """" Eigenvalue of L '
Lg = Ag
T o T
g'Lg = Ng' g

"=~ = |,as eigenvectors
T l: A are are orthonormal
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Relationship between Eigenvalues of
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= |, as eigenvectors
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Relationship between Eigenvalues of
the Laplacian and Smoothness

Eigenvector of L I\x _.- FEigenvalue of L '

Q
~
b‘
Q
|
=
~
Q

“u
L ]
i
L ]

= |, as eigenvectors

A are are orthonormal
g Lg=A,
% 4 wLra— |
If an eigenvector is used to
Measure of - classify nodes, then the
Non-Smoothness corresponding eigenvalue gives
(previous slide) the measure of non-smoothness
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Spectrum of the Graph Laplacian

(a) a linear unweighted graph with two segments
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(b) the eigenvectors and eigenvalues of the Laplacian L

22

T [‘ ROy
L

-

;,-'_w;gj:;]xg;;,
(e A

A A
“ NN 4

A, 5=3.OO

A, =3.96
20

Higher Eigenvalue,
Irregular Eigenvector,
Less smoothness

Figure from [Zhu et al., 2005]



Notations

Y., 1 :score of estimated label | on node v

Seed Scores

Label Priors

Estimated
Scores

Y., 1 :score of seed label | on node v

R, : regularization target for label | on node v

S :seed node indicator (diagonal matrix)

W : weight of edge (u, v) in the graph
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Notations

Y, 1 :score of estimated label | on node v Seed Scores

Label
Regularization

Y., 1 :score of seed label | on node v
Estimated

Scores

R, : regularization target for label | on node v

S :seed node indicator (diagonal matrix)

W : weight of edge (u, v) in the graph
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LP-ZGL [Zhu et al,, ICML 2003]

m m

. A N2 T 7%

arg min E Waw (Yur — Yor)© = ZYZ f l
L I=1

such that Yul — Yul7 \V/Suu =1 Gi*aph

Laplacian
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LP-ZGL [Zhu et al,, ICML 2003]

Smooth
Cm m
. ~ ~ T 1Y
arg min E Woo (Y — Yor)? :ZYZ f z
Y li=1 =1
such that Yul — Yul7 \V/Suu — 1 G:*aph

Laplacian
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LP-ZGL [Zhu et al,, ICML 2003]

Smooth
" m m
. A SHENG ’ )
arg min Z Wo Y — Yo )2 [= ) Ysz z
Y =1 =1
such that [Yul — Yula \V/Suu — 1] G:*aph

Laplacian

Match Seeds
(hard)
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LP-ZGL [Zhu et al,, ICML 2003]

Smooth
' m m
: ~ "\ 2 ’ >
arg min Z Wo Y — Yo )2 [= ) Ysz z
Y li=a =1
such that [Yul — Yula \V/Suu — 1] G:*aph
Match Seeds —_—
(hard)

® Smoothness

® two nodes connected by
an edge with high weight
should be assigned similar

labels
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LP-ZGL [Zhu et al,, ICML 2003]

Smooth
— .
Yoli= =1
such that [Yul — Yula VSW — 1] G:’aph
Laplaci
Match Seeds —
(hard)
® Smoothness ® Solution satisfies harmonic
® two nodes connected by property

an edge with high weight
should be assigned similar

labels
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Two Related Views

Unlabeled Node '

Labeled (Seeded) | Label Diffusion
Node s "
‘ VAVA S

Random Walk

‘4 VAVA Y
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what next? Starting node

NI
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Random Walk View

what next? Starting node

t

e Continue walk with probability p;,~"

inj

* Assign V’s seed label to U with probability Py

* Abandon random walk with probability p3°ne

e assign U a dummy label

29
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Discounting Nodes

® Certain nodes can be unreliable (e.g, high degree nodes)

® do not allow propagation/walk through them

® Solution: increase abandon probability on such
nodes:

p2PPd  degree(v)

30



Redefining Matrices

/

cont
W =7 X W

New Edge -
Weight _ tmj

abnd
RuT — Py

, and 0 for non-dummy labels

Dummy Label

31
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[Talukdar and Crammer, ECML 2009]
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[Talukdar and Crammer, ECML 2009]

=1 L U

e m labels, +1 dummy label

, U

M=W"+ W'is the symmetrized weight matrix

A

Y ,;: weight of label [ on node v

Y ,;: seed weight for label [ on node v
S: diagonal matrix, nonzero for seed nodes

R,;: regularization target for label [ on node v

32
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Scores
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Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

Match Seeds (soft)

[=1 B / u,v

e m labels, +1 dummy label

M=W"+ W'is the symmetrized weight matrix

A

Y ,;: weight of label [ on node v
Y ,;: seed weight for label [ on node v
S: diagonal matrix, nonzero for seed nodes

R,;: regularization target for label [ on node v

32
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m-+1
arg min Z 1SY; — SY||* B 11
Y
[=1 \ J

Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

Match Seeds (soft)

Smooth

e m labels, +1 dummy label

Z M (Y

L.

Y ﬁmu?z—w

M=W"+ W'is the symmetrized weight matrix

A

Y ,;: weight of label [ on node v

Y ,;: seed weight for label [ on node v

\%

| _I

.- U

S: diagonal matrix, nonzero for seed nodes

R,;: regularization target for label [ on node v

32
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Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

arg min Z |SY,

[=1 [\

— SY|°

Match Seeds (soft)

+ [

Smooth

e m labels, +1 dummy label

L.

M=W"+ W'is the symmetrized weight matrix

A

Y ,;: weight of label [ on node v

Match Priors
(Regularizer)

ZMM ul — )1 2l Y1 - ng]]

Y ,;: seed weight for label [ on node v \4

I
_I Seed Scores

o Label Priotrs

S: diagonal matrix, nonzero for seed nodes

R,;: regularization target for label [ on node v

32
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Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

arg min Z ISY,

[=1 [\

— SY|°

Match Seeds (soft)

+ [

Smooth

e m labels, +/1\ dummy label

L.

— C for none-of-the-above label )d weight matrix

A

Y ,;: weight of label [ on node v

Match Priors
(Regularizer)

ZMUU ul — )1 2l Y1 - ng]]

Y ,;: seed weight for label [ on node v \4

I
_I Seed Scores

o Label Priotrs

S: diagonal matrix, nonzero for seed nodes

R,;: regularization target for label [ on node v

32

> Estimated
YU Scores



Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

arg min ISY,
=1 &

— SY|°

Match Seeds (soft)

+ [

Smooth

e m labels, +/1\ dummy label

Z M (Y

L.

Match Priors
(Regularizer)

=Y ﬁmu?z—w]

o M — C for none-of-the-above label )d weight matrix

A

e Y ;. weight of label [ on node v

e Y ;: seed weight for label [ on node v

\%

I
_I Seed Scores

o Label Priotrs

e S: diagonal matrix, nonzero for seed nodes

e R,;: regularization target for label [ on node v

> Estimated
YU Scores

MAD has extra regularization compared to LP-ZGL
[Zhu et al, ICML 03]; similar to QC [Bengio et al, 2006]




Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

arg min ISY,
=1 &

— SY|°

Match Priors

Match Seeds (soft) Smooth (Regularizer)

b S M (Y - ﬁmufﬁ - RzH?]

L.

e m labels, +/1\ dummy label

o M — C for none-of-the-above label }d weight matrix

. . |
e Y ;. weight of label [ on node v \ Seed Scofes
. .-'z; L b IPfl r
e Y ;: seed weight for label [ on node v \'% abel Friors
\D Estimated
e S: diagonal matrix, nonzero for seed nodes Y/ Scores

e R,;: regularization target for label [ on node v

MAD’s Obijective
is Convex

MAD has extra regularization compared to LP-ZGL
[Zhu et al, ICML 03]; similar to QC [Bengio et al, 2006]
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® Can be solved using matrix inversion (like in LP)
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Solving MAD Objective

® Can be solved using matrix inversion (like in LP)

® but matrix inversion is expensive
® |nstead solved exactly using a system of linear
equations (Ax = b)
® solved using Jacobi iterations
® results in iterative updates
® guaranteed convergence

® see [Bengio et al.,2006] and
[Talukdar and Crammer, ECML 2009] for details
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Solving MAD using Iterative Updates

Inputs Y, R : |V| x (|[L|+ 1), W :|V]| x |V]|, §:|V]| x |V| diagonal
Y ~—Y /
M=Ww+w"
Lo %SUU—F,LLlEU#UMUu—FILLQ YveV
repeat
for allv €V do A
Y, ((SY)U M, Y + MQRU)
end for
until convergence

Current label | 7|
1 .
estimate on b ¢°

0.60 0.75
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end for

until convergence

New label
estimate on v

34



Solving MAD using Iterative Updates

Inputs Y, R: |V| x (|[L|+ 1), W : |[V| x |V|, §:|V]| x |V]| diagonal
Y «Y /
M=Ww+w"
Lo %SW—F/“ZU#UMW—F/LQ YveV
repeat

for allv €V do A

Y, ((SY)U M, Y + MRU)

end for

until convergence

New label
estimate on v

4 )

* Importance of a node can be discounted

* Easily Parallelizable: Scalable (more later)

&
34
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When is MAD most effective!?

©
n

LP-ZGL

o
w

n se in MRR by MAD over
o
N

0 7.5 15 22.5 30
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o
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LP-ZGL

o
w

o
)

n se in MRR by MAD over
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Transduction Algorithm with Confidence
(TACO) [Orbach and Crammer, ECML 2012]
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discount bad (high degree)
nodes .

e TACO generalizes notion of % _I_
bad, adds per-node, per-class

confidence Class (m = 3)
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Transduction Algorithm with Confidence
(TACO) [Orbach and Crammer, ECML 2012]

Low

* Main lesson from MAD: " - Confidence
discount bad (high degree) _I_
nodes

% *

» TACO generalizes notion of 7 _I_
bad, adds per-node, per-class
confidence " Class (m = 3)

Label Scores:  H; = |Mi,1 .- Hiom| € R

Confidence: o; = |0;1 ... Oim| €R"™
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Introducing Confidence

e Neighborhood disagreement => low confidence

-1-
-1-
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Introducing Confidence

e Neighborhood disagreement => low confidence

-1-
-1-

e Lower the effect of poorly estimated (low
confidence) scores

38



TACO Obijective

manifold term labeled term regularization

e N—

arg min Z wi,jD (ZBZ', iI)j) + Zl: D (2137;, yz) + Z R (CBZ)

Wi 11T} 4 =1 i=1 i=1
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TACO Obijective

manifold term labeled term regularization
e N
ng n
arg min E w; ;D mz,wj)—l—g D(wi,yi)—kg R (x;)

{N}‘{U}zj 1

D (xz;,x;)

1=1 1=1

Z(O'zr jr) ,u”—,uj,r)z
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TACO Obijective

manifold term labeled term regularization
e e
n iy n
argmin E wi,jD (:cz-,azj)—I— E D(a:z,yz)—l— E R(ZBZ)
{M;}-{Ui}i,jzl 1=1 1=1
m
1 1 9
D@ia) =Y (5 + 7= ) e — i)
r—1 Oi,r Oj.r

4 N

ax — [log (x)

R(x;) = aia&-,r — Bgm:log Tir
r=1 r=1

4
i
ZL/
' 05 1 15 2 25 3 35 P

. /
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TACO Obijective

manifold term labeled term regularization

e N——

n ng n
arg min Z wi,jD (iBi, a:j) + Z D (CL‘@, yz) -+ Z R (ZEZ)
1=1

{M;}-{Ui}i,jzl 1=1

m | | ,
D (x;,z;) = Z (a- - — ) (Wbir — tj,r)
i,7 7,7

r=1

4 N

ax — [log (x)

R(CBZ) = aiai’r — Bilog Ti,r
r=1 r=1

» Convex objective \/

e |terative solution 5 y
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TACQO: Iterative Algorithm

Parameters: a, 3 > 0 (controls regularization)
: v > 0 (labeled confidence)
Input: Graph G = (V, E, W) and prior labeling y. for each v; € V

Initialize: pn, =0and o; =1 for all v; € V
Repeat updates:
- Forwv; € V: [ C(G,{p;}.{o;}) is the objective ]
oC (G, ¢ ,{0;
( {;J} { J}):O — ui:...
M

oC (G, {p;},{o;})
8O'Z‘

Until convergence
Output: Estimated scores {p,}
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TACQO: Iterative Algorithm

Parameters: a, 3 > 0 (controls regularization)
: v > 0 (labeled confidence)
Input: Graph G = (V, E, W) and prior labeling y. for each v; € V

Initialize: pn, =0and o; =1 for all v; € V
Repeat updates:
- Forwv; € V: [ C(G,{p;}.{o;}) is the objective ]
'/ """""""""""""""""""""""" ~a
j oC (G, it ,{o ‘
: H; :
: :
' |
@G iut e
\ do z /

Until convergence
Output: Estimated scores {p,}
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TACO: Score Update

z T g7 £, 7

71=1

t—1 .
ZJ#% Wi, 5 ( (r:1 7y a(t1—1)> u§ - ) + 01(7) (G(tl—l) s

ZJ#% W;, 5 ( (tl iy (- 1)) + 0u(7) (a(tl—l)

71=1

z T J,r 2,7
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TACO: Score Update

t,?‘

t—1 .
Z]#’b Wi 5 ( (lt1 1) | a(t1—1)> /L; r ) + 51(7’) ( (tl 1) L %) Yir

j=1

2 r J.7

us)

updated score

N

J

1 1 1
Z#z wm( -1 (- 1)) + 0y (d )< -1y 7)
] 1 zr J,r ai,r
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TACO: Score Update

pity

updated score

N

J

1,1
— |
2

o

edge weight
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TACO: Score

1 1 : 1
E#z wm( G- JCESY | g (t—1) . ?) Yi,r

(t) j=1 0,7 J.r
/'L’L/T (_
1 1 1
Z]#Z ww( G- T -] | ;)
] 1 z T oj,r
4 )
(1)
Pig
updated score .
N J _ oo
0.3 5 B - R
(t—1)
Hj r
neighbour score
N J

edge weight

N / 41




TACO: Score Update

N . . 1 |

D i wm( (t—1) | )
(t) j=1 Tir

M r —

n 1
2_j#i Wiy |~

3:1 i,

o,
- ) ™ . JsT
,u,g : neighbour
updated score| | uncertainty
- J \\\ \ /
— a
(t—1)
l‘l‘j"r
neighbour score
- J
N
edge weight
N y, 41




TACO: Score Update

n 1
2_i#i Wij | oD

j=1

? ™

Y 4 8,(4) (09_1_1) - %) Yir

N

23#1 W;, 5 (

71=1

updated score

J

- Average Neighbors
- Consider Confidence

>+(5l(z’) (agti_l) | %)
=

=1

]T‘

~

neighbour

uncertaint
N yj

o

(t

1)

~

neighbour score

J

o

edge weight
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TACO: Confidence Update

(2 + 2«
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TACO: Confidence Update

w0

updated

uncertaint
N yj
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TACO: Confidence Update

o . B, 1 e, v (t-1) _ (.t—1)>2 5.7 ( (t-1) .)2
Tir 2a+2a\ﬂ o }w‘ o Hjr +01(2) | i, Yi,r

4 I
(1)
Oi.r

updated

uncertaint
N yj

edge weight




TACO: Confidence Update

o B 1 ) - N (t=1)) 2 NS
T 2a+%\ﬂ o ;wz’]_“”" ) +5’(z)(“*¥’" _y”’")

— —

(t—1)

- B\
(t) M .7
T score ’for x
updated N .
uncertaint
N Y)

edge weight
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TACO: Confidence Update

o . B, 1 e, - '_((-t—l) : 5.((;—1)_')2
i 2a+2a\ﬂ T 2a j;w%] 1,7 T I(Z) :U’z,r yz,r

- —

a ™ (t—1)
(t) Foi r
T score ’for @x
updated N .
uncertaint
N Y .
- (t—1) D
H J,T
neighbour score
~\\\ \ J
= == ~

edge weight

\_ 42




TACO: Confidence Update

4 I
(1)
Oi.r

updated

uncertaint
N yj

Confidence is monotonic
In neighbors
“disagreement”

o

(t—1)
“i,r
score for x;
\ J
\\\
4 (t—l) I
Mj,r

neighbour score

J

o

edge weight
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Manifold Regularization
[Belkin et al., JMLR 2006]

[
£ = argmin 1 3" Vi, £(20)) + B 7LF + 11l
1=1
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Manifold Regularization
[Belkin et al., JMLR 2006]

Training Data
Loss

-
f* = argmfiﬂj zz;[‘{(yuf(%))]—l_ﬁ fPLf + A1l

Loss Function
(e.g., soft margin)
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Manifold Regularization
[Belkin et al., JMLR 2006]

Training Data Smoothness
Loss Regularizer

f* = argmm l z:[V (s, f23)) ]4—[5 fTLf]'\‘/VHfHK

Laplacian of graph
over labeled and
unlabeled data

Loss Function
(e.g., soft margin)
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Training Data Smoothness Regularizer
Loss Regularizer  (e.g., L2)

f* _argmm ; z:[V (ys, fx;)) ]#—[ﬁ fTLf]'F[’YHfHK]

Laplacian of graph
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Manifold Regularization
[Belkin et al., JMLR 2006]

Training Data Smoothness Regularizer
Loss Regularizer  (e.g., L2)

f* _argmm ; z:[V (ys, fx;)) ]ﬁ—[ﬁ fTLf]'F[”YHfHK]

Laplacian of graph
over labeled and
unlabeled data

Loss Function
(e.g., soft margin)

-

Trains an inductive classifier which can generalize
to unseen instances

\

44
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Measure Propagation (MP)

[Subramanya and Bilmes, EMNLP 2008, NIPS 2009, JMLR 201 1]

46



Measure Propagation (MP)

[Subramanya and Bilmes, EMNLP 2008, NIPS 2009, JMLR 201 1]

CKL Divergence on
seed nodes
arg ?Hn Z[DKL Tszz \"‘ H Z wi; DKL szpJ —V Z H pz
pi}

St sz _]- pz )207 \V/y,

Seed and estimated label
distributions (normalized)
on node i
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Measure Propagation (MP)

[Subramanya and Bilmes, EMNLP 2008, NIPS 2009, JMLR 201 1]

CKL Divergence on Smoothness
seed nodes (divergence across edge)
afg]f{ﬂlﬂ Z[DKL Tszz \JF,U E [wngKL szpg]— v E :H (pi)
pi }

At sz ) =1, piy) S 0, Yy, i

Seed and estimated label

distributions (normalized)

KL Dlvergence

(¥)

y)
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Measure Propagation (MP)

[Subramanya and Bilmes, EMNLP 2008, NIPS 2009, JMLR 201 1]

CKL Diver'gence on Smoothness En'rr'opic Regularizer
seed nodes (divergence across edge) .
al'g {f{ﬂlﬂ Z[DKL (75 \ pi) \Jr f Z[wzg DKL (pi] ‘pg)] [ Z {f(pz )]
pi }
=1,
S t sz = 1, pz(y) “E 0, \V/yai ,"

I
4 l | )
O

Seed and estimated label

distributions (normalized) )
on node | D1 (pillpy) Zp log H(p) = —> pi(y)logpi(y)

KL Divergence Entropy
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Measure Propagation (MP)

[Subramanya and Bilmes, EMNLP 2008, NIPS 2009, JMLR 201 1]

CKL Diver'gence on Smoothness Enfropic Regularizer
seed nodes (divergence across edge) .
arg {f{ﬂlﬂ Z[DKL (74 \ pi) \Jr P E [wzg DKL (pi] ‘pg)] [ E : {f(pz )]
pi} —
s t E pz(y) =1, pz(y) ‘2 0, Vy,1 /
'l':l Yy '1 “‘ l"
S.eec.l anFI estimated I.a bel K KL Dlvergencé Entropy
distributions (normalized) Re W)
on node i ',' Dk 1. (pillpj) Zp log y) H(p;) = —zy:pi(y) log p;(y)

Normalization Constraint l
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Measure Propagation (MP)

[Subramanya and Bilmes, EMNLP 2008, NIPS 2009, JMLR 201 1]

CKL Diver'gence on Smoothness En'l'r'opic Regularizer
seed nodes (divergence across edge) .
argmmz:[DKL Tszz \—I—,u g [UJUDKL Pszg)] [ § H(pz)]
{p:} — A
1—=1,
o ,St E pZ —1 pz( )‘ZO Yy, 1 B
S.eec.l anFI estimated I.a bel /' KL Dlvergencé Entropy
distributions (normalized) Re W)
on node i ',' Dk 1. (pillpj) Zp log y) H(pi) = — sz(y) log pi(y)
% Y

L4
»

Normalization Constraint l

CKL iS CONVEX (with non-negative edge weights and hyper-parameters)
MP is related to Information Regularization [Corduneanu and Jaakkola, 2003]
46



Solving MP Obijective

® For ease of optimization, reformulate MP objective:

Cmp

[ n
arg min Y Dy (rillg:) + 1Y wy; Dir(pillay) — vy H(p;)

piait i i i—1
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Solving MP Obijective

® For ease of optimization, reformulate MP objective:

Cmp

[ n
arg min} ZDKL(T‘Z'HC]?;) + MzwijDKL(piHQj) — VZH(Z%‘)

Wingi} i i,] 1=1

New probability
measure, one for each
vertex, similar to p;
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Solving MP Obijective

® For ease of optimization, reformulate MP objective:

arg min ZDKL (rlla:) —I—,uZw Drr(pillgy) —VZH i)
i=1

7] f\ 1=1

: / ! . .
New probability Wi = Wij T O‘,‘i 5(7’7 ])I

measure, one for each
vertex, similar to p;

L ]
~
~
~
~
~
~
N
§~
~L

Encourages agreement
between p; and q;

argmin Cxz(p) = lim argmin Cmp(p;q)

pEA” > p,qEA”"
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Solving MP Obijective

® For ease of optimization, reformulate MP objective:

arg min ZDKL (rlla:) —I—,uZw Drr(pillgy) —VZH i)

7.7 f 1=1

: / ! . .
New probability Wi = Wij T O‘Ji 5(Z7 ])'

measure, one for each
vertex, similar to p;

N
~
~
~
~
~N
~
~
§~
~L

Encourages agreement

Cwmp is also convex between pi and g
argmin Cxr lim argmin Cup(p,9)
(with non-negative edge weights and hyper-parameters) e K ) = L R e S
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Solving MP Obijective

® For ease of optimization, reformulate MP objective:

arg min ZDKL e —I—,uZw Drr(pillgy) —VZH i)
i=1

I
I 1
1 1
1 1
1 / -

New probability Wi = Wij T O“X 5(27 ])I
h.
measure, one foreach | S
vertex, similartop; |  Ttsl
Encourages agreement
Cwmp is also convex between piand g;
. . . argmin Cx.(p) = lim argmin Cy (p,q)
(with non-negative edge weights and hyper-parameters) pea” “pacar

[ Cwmp can be solved using Alternating Minimization (AM) j
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Alternating Minimization

P Given distance d(P, Q)

Convex sets P and O. ,
with P € P and Q € Q.
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Given distance d(P, Q)
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Start with Qg € 9

D

Convex sets P and O.
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l)

QL= argcgnin d(P1, Q)
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Given distance d(P, Q)
with P € P and Q € Q.

Start with Qg € 9

P; = argmin d(P, Qp)
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Q1 = argmin d(P1, Q)
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Qo = arggwin d(P2,Q)
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with P € P and Q € Q.
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Ql — argmin d(P1>Q)
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P2 — argmin d(Ps (21)
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Alternating Minimization

Given distance d(P, Q)
with P € P and Q € Q.

Start with Qg € O

Convex sets P and O. P

P; = argmin d(P, Qo)
P

Q1 = argmin d(P1, Q)
Q@

P> = argmin d(P, Q1)
P
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Why AM?

Criteria MOM AM
[terative YES YES
Learning Rate Armijo Rule None
Number of Hyper-parameters 7 1 (o)
Test for Convergence Requires Tuning Automatic
Update Equations Not Intuitive Intuitive and easily Parallelized

Table 1: There are two ways to solving the proposed objective, namely, the popular numerical op-
timization tool method of multipliers (MOM), and the proposed approach based on alter-
nating minimization (AM). This table compares the two approaches on various fronts.
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Why AM?

Criteria MOM AM
[terative YES YES
Learning Rate Armijo Rule None
Number of Hyper-parameters 7 1 (o)
Test for Convergence Requires Tuning Automatic
Update Equations Not Intuitive Intuitive and easily Parallelized

4
4

Table 1: There are two ways to solving the proposed objective, namely, the popular numerical op-
timization tool method of multipliers (MOM), and the proposed approach based on alter-
nating minimization (AM). This table compares the’two approaches on various fronts.

74

exp{£ 3, wj;logg;" " (»)}
>, exp{£3,wj;logg" ()}

() = OGS D +uZp )
| (i <1)+uZ;w;

p" (y) =

where y; = v+ud.; w:.j
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Performance of SSL Algorithms

COIL OPT
) 10 20 50 80 | 100 | 150 10 20 50 80 | 100 | 150
k-NN 345 |1339 | 669 | 719 | 192 | 833 || 796 | 839 | 855 | 905 | 920 | 938
SGT 40.1 | 61.2 | 78.0 | 88.5 | 89.0 | 899 || 904 | 90.6 | 91.4 | 94.7 | 97.4 | 97.4
LapRLS || 49.2 | 614 | 784 | 80.1 | 84.5 | 87.8 | 89.7 | 91.2 | 92.3 | 96.1 | 97.6 | 97.3
SQ-Loss-I || 48.9 | 63.0 | 81.0 | 87.5 | 89.0 | 90.9 || 92.2 | 90.2 | 95.9 | 97.2 | 97.3 | 97.7
MP 47.7 | 65.7 | 785 | 89.6 | 90.2 | 91.1 || 90.6 | 90.8 | 94.7 | 96.6 | 97.0 | 97.1

Comparison of accuracies for different number of labeled
samples across COIL (6 classes) and OPT (10 classes) datasets
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Performance of SSL Algorithms

Comparison of accuracies for different number of labeled
samples across COIL (6 classes) and OPT (10 classes) datasets

-

Graph SSL can be effective when the data satisfies manifold
assumption. More results and discussion in Chapter 21 of

the SSL Book (Chapelle et al.)

\
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Background: Factor Graphs
[Kschischang et al,, 2001 ]

Factor Graph
* bipartite graph
e variable nodes (e.g., label distribution on a node)
e factor nodes: fitness function over variable assignment

‘..'~
Variable Nodes (V) '

™
~
~
~
-,
=~

Factor Nodes (F) '

Distribution over all variables’ values

log P ({vtvey) = —logZ + Z log oy ({Uw}(v,f)eE)

JEF X .
variables connected

59 to factor f




Factor Graph Interpretation of
G raph SSL [Zhu et al., ICML 2003] [Das and Smith, NAACL 2012]

3-term Graph SSL Objective (common to many algorithms) l

. Seed Matching Edge Smoothness Regularization
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Factor Graph Interpretation of
G raph SSL [Zhu et al., ICML 2003] [Das and Smith, NAACL 2012]

3-term Graph SSL Objective (common to many algorithms) l

. Seed Matching Edge Smoothness Regularization

v
| 2

w1 2 ||Q1 —612|
Q=0
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Factor Graph Interpretation of
G raph SSL [Zhu et al., ICML 2003] [Das and Smith, NAACL 2012]

3-term Graph SSL Objective (common to many algorithms)

. Seed Matching Edge Smoothness Regularization

me ||Q1 —Q2||©
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Factor Graph Interpretation of
G raph SSL [Zhu et al., ICML 2003] [Das and Smith, NAACL 2012]
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Factor Graph Interpretation of
G raph SSL [Zhu et al., ICML 2003] [Das and Smith, NAACL 2012]

3-term Graph SSL Objective (common to many algorithms)

Seed Matching Edge Smoothness Regularization
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Factor Graph Interpretation
[Zhu et al., ICML 2003][Das and Smith, NAACL 2012]
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Enforce through sparsity inducing unary factor
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Label Propagation with Sparsity

Enforce through sparsity inducing unary factor

Lasso (Tibshirani, 1996) log1:(q:) = — A ||qe|l;

Elitist Lasso (Kowalski and Torresani, 2009) ,
log ¥¢(q¢) = —A(llaell,)
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Label Propagation with Sparsity

Enforce through sparsity inducing unary factor

Lasso (Tibshirani, 1996) log1:(q:) = — A ||qe|l;

Elitist Lasso (Kowalski and Torresani, 2009) ,
log ¥¢(q¢) = —A(llaell,)

For more details, see [Das and Smith, NAACL 201 2]|
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Other Graph-SSL Methods

Spectral Graph Transduction [Joachims, ICML 2003]

SSL on Directed Graphs
® [Zhou et al, NIPS 2005], [Zhou et al., ICML 2005]

Learning with dissimilarity edges
e [Goldberg et al., AISTATS 2007]

Learning to order: GraphOrder [Talukdar et al., CIKM 2012]

Graph Transduction using Alternating Minimization
® [Wang et al,, ICML 2008]

Graph as regularizer for Multi-Layered Perceptron
e [Karlen et al, ICML 2008], [Malkin et al., Interspeech 2009]
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More (Unlabeled) Data is Better Data
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* Brute force (exact) k-NNG too expensive
(quadratic)

60



Scalability Issues (1)

Graph Construction

* Brute force (exact) k-NNG too expensive
(quadratic)

 Approximate nearest neighbor using kd-
tree [Friedman et al,, 1977, also see http://

www.cs.umd.edu/"mount/]
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Scalability Issues (ll)

Label Inference

* Sub-sample the data

® Construct graph over a subset of a unlabeled
data [Delalleau et al., AISTATS 2005]

® Sparse Grids [Garcke & Griebel, KDD 2001]
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Scalability Issues (ll)

Label Inference

* Sub-sample the data

® Construct graph over a subset of a unlabeled
data [Delalleau et al., AISTATS 2005]

® Sparse Grids [Garcke & Griebel, KDD 2001]

® How about using more computation?! (next section)

® Symmetric multi-processor (SMP)

® Distributed Computer
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Parallel computation on a SMP
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Label Update using Message Passing
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Label Update using Message Passing
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Node Reordering Algorithm

Input: Graph G = (V, )
Result: Node ordered graph
|. Select an arbrtrary node v

2. while unselected nodes remain do

2.|. select an unselected node v from among the
neighbors’ neighbors of v that has maximum
overlap with v neighbors

2.2. mark v as selected

2.3.setvtov

66 [Subramanya & Bilmes, JMLR, 201 1]



Node Reordering Algorithm

Input: Graph G = (V, )
Exhaustive
for sparse

' (e.g. k-NN)
“ graphs

Result: Node ordered graph

|. Select an arbrtrary node v

7. while unselected nodes rem'ain do

2. 1. select an unselected'node v’ from among the

eishbors’ neighborof v that has maximum

overlap with v neighbors
2.2. mark v as selected

2.3.setvtov

66 [Subramanya & Bilmes, JMLR, 201 1]



Node Reordering Algorithm : Intuition
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Node Reordering Algorithm : Intuition
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Node Reordering Algorithm : Intuition
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Speed-up on SMP after Node Ordering
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Distributed Processing

¢ Maximize overlap between consecutive nodes
within the same machine

¢ Minimize overlap across machines (reduce inter
machine communication)
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Distributed Processing
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Node reordering for Distributed Computer

Processor #i Processor #j
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Node reordering for Distributed Computer
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Distributed Processing Results
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MapReduce Implementation of MAD
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® Map

® FEach node send its current
label assignments to its
neighbors
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® Map

® FEach node send its current
label assignments to its
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® Reduce

® FEach node updates its own label
assignment using messages
received from neighbors, and its
own information (e.g., seed
labels, reg. penalties etc.) 0.05

® Repeat until convergence @
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MapReduce Implementation of MAD

® Map

® FEach node send its current
label assignments to its

neighbors
New label

o Reduce estimate on v

® FEach node updates its own label
assignment using messages
received from neighbors, and its
own information (e.g., seed
labels, reg. penalties etc.) 0.05

® Repeat until convergence @
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MapReduce Implementation of MAD

® Map

® FEach node send its current
label assignments to its

neighbors
New label

® Reduce estimate on v

® FEach node updates its own label
assignment using messages
received from neighbors, and its

own(
abe| Code in Junto Label Propagation Toolkit

® Repe (includes Hadoop-based implementation)

http://code.google.com/p/junto/
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MapReduce Implementation of MAD

® Map

® FEach node send its current
label assignments to its
neighbors
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® Reduce (
Graph-based algorithms are

® FEach nodelamenable to distributed processing | Prior
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received from neighbors, and its
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abe| Code in Junto Label Propagation Toolkit

® Repe (includes Hadoop-based implementation)

http://code.google.com/p/junto/
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Problem Description & Motivation

® Given a “frame” of speech classify it into one
of n phones

® Training supervised models requires large
amounts of labeled data (phone classification
in resource-scarce languages)
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TIMIT

Corpus of read speech

Broadband recordings of 630 speakers of 8 major
dialects of American English

Each speaker has read |10 sentences

Includes time-aligned phonetic transcriptions
Phone set has 61 phones [Lee & Hon, 89]

® mapped down to 48 phones for modeling

® further mapped down to 39 phones for scoring
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Graph Construction
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“Labeled” Graph Construction
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Switchboard Phonetic Annotation

® Switchboard corpus consists of about 300 hours of
conversational speech.

® | ess reliable automatically generated phone-level
annotations [Deshmukh et al., 1998]

® Switchboard transcription project (STP)
[Greenberg, 1995]

® Manual phonetic annotation

® Only about 75 minutes of data annotated
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Graph Construction
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Problem Description & Motivation

® Given a document (e.g., web page, news
article), assign it to a fixed number of
semantic categories (e.g., sports, politics,
entertainment)

® Multi-label problem

® Training supervised models requires large
amounts of labeled data [Dumais et al., 1998]
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Corpora

® Reuters [Lewis, et al., 1978]
® Newswire

® About 20K document with |35 categories. Use

9 ¢¢

top 10 categories (e.g., ‘earnings’, “acquistions’,

) ¢¢°

“wheat”, “interest”) and label the remaining as
“other”
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Corpora

® Reuters [Lewis, et al., 1978]
® Newswire

® About 20K document with |35 categories. Use

top 10 categories (e.g., ‘earnings’, “acquistions’,
) ¢C¢°

“wheat”, “interest”) and label the remaining as
“other”

® WebKB [Bekkerman, et al., 2003]
® 8K webpages from 4 academic domains

® Categories include “course”,“department”,
¢¢ 9 ¢¢ o 9
faculty” and “project”
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Results

Average
PRBEP SVM | TSVM | SGT LP MP | MAD

Reuters| 48.9 | 59.3 60.3 59.7 | 66.3 -

WebKB| 23.0 | 292 | 368 | 41.2 | 51.9 | 53.7

Precision-recall break even point (PRBEP)
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Results

Transductive Spectral Label Propagation
SVM Graph [Zhu & Ghahramani 2002]
[Joachims 1999] Transduction K .
Support v (SGT) K Measure Propagation
Vector . [Joachims 2003] K [Subramanya & Bilmes 2008]
Machine \ : 0 ’
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Problem description

® Dialog acts (DA) reflect the function that
utterances serve in discourse

® Applications in automatic speech recognition
(ASR), machine translation (MT) & natural language
processing (NLP)
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Switchboard DA Corpus

® Switchboard dialog act (DA) tagging project
[Jurafsky, et al., 1997]

® Manually labeled I 155 conversations (about 200k sentences)

® Example labels: question, answer, backchannel, agreement... (total
of 42 different DAs)

® Use top |8 DAs (about |85k sentences)
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Graph Construction

® Bigram & trigram TFIDF
® Cosine similarity

® k-NN graph
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SWB DA Tagging Results

B SQ-Loss B MP

86

® Baseline
performance: 84.2%

[Ji & Bilmes, 2005] 82.5

80.75

84.25

79
Bigram Trigram

98 [Subramanya & Bilmes, JMLR 201 1]
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® Computer-human dialogues

® answering telephone queries about train services in Spain
® about 900 dialogues

® topics include timetables, fares and services

® 225 speakers
® Standard train/test set (16k/7.5k sentences)
® Number of labels = 72
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Dihana Results

B SQ-Loss o MP

® Results for classifying 52

user turns 80.25

® PBaseline 78.5
Performance: 76.4%

76.75

75

Bigram Trigram

100 [Subramanya & Bilmes, JMLR 201 ]
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Problem Description

® Phrase-based statistical machine translation (SMT)

® Sentences are translated in isolation
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Motivation
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Issues

® VWhat we want to do -

® exploit similarity between sentences

® |nput consists of variable-length word strings

® Output space is structured (number of possible
“labels” is very large)
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106



Graph Construction (ll)

Labeled data: {(s1:t1), .-, (si,t0) }
Unlabeled data (test set): {8141, 8n}
Unlabeled

sentence |*--.__

106



Graph Construction (ll)

Labeled data: {(s1,t1),-- -, (s1,t1) }
Unlabeled data (test set): {8141, 8n}
Unlabeled N-best “St
sentence |-- -
e o First pass (1) (N)
S
¢ | Decoder s s

106



Graph Construction (ll)

Labeled data: {(s1,t1),-- -, (s1,t1) }
Unlabeled data (test set): {8141, 8n}
Unlabeled N-best “St
sentence |-- -
e o First pass (1) (N)
S
¢ | Decoder s s

106



Graph Construction (ll)

Labeled data: {(s1,t1),-- -, (s1,t1) }
Unlabeled data (test set): {8141, 8n}
Unlabeled N-best “St
sentence |-- -
e o First pass (1) (N)
S
¢ | Decoder s s

106



Graph Construction (lll)

Unlabeled
sentence

|07



Graph Construction (lll)

Unlabeled All sentences

sen.i‘:ence (Labeled + Test)

|07



Graph Construction (lll)

Unlabeled All sentences
sen.i‘:ence (Labeled + Test)

Find ost
X§ Similar

S.; sentences
()

|07



Graph Construction (lll)

Unlabeled All se
sentence (Labelec

Find ost
X§ Similar

S.; sentences
()

|07



Graph Construction (lll)

Unlabeled All sentences
sen.i‘:ence (Labeled + Test)

“\ Flnd oSt >
X§ Similar

S.; sentences
()

|07



Graph Construction (lll)

Sentence similarity |

Unlabeled All sentences
sen‘i‘:ence (Labeled + Test)

“\ Flnd oSt >
X§ Similar

S.; sentences
()

|07



Graph Construction (lll)

Sentence similarity
Unlabeled All sentences [ y

sen‘i‘:ence (Labeled + Test)

‘\ Find oSt >
X§ Similar

S.; sentences
()

hY)

|07



Graph Construction (lll)

Sentence similarity |

Unlabeled All sentences
sen‘i‘:ence (Labeled + Test)

“\ Flnd oSt >
X§ Similar
sentences

|07



Graph Construction (lll)

Sentence similarity
Unlabeled All sentences [ y

sen‘i‘:ence (Labeled + Test)

‘\ Find oSt >
X§ Similar
sentences

Targets &
Hypothesis




Graph Construction (lll)

Sentence similarity |

Unlabeled All sentences
sen‘i‘:ence (Labeled + Test)
Find Mmost >
X Similar

sentences

Targets &
Hypothesis

|07



Graph Construction (lll)

Sentence similarity
Unlabeled All sentences [ y

sen‘i‘:ence (Labeled + Test)

‘\ Find oSt >
X§ Similar
sentences

Targets &
Hypothesis

|07



Graph Construction (lll)

Sentence similarity |

Unlabeled All sentences
sen‘i‘:ence (Labeled + Test)

“\ Flnd oSt >
X§ Similar
sentences

[Label similarity J

Targets &
Hypothesis

|07



Graph Construction (lll)

Sentence similarity
Unlabeled All sentences [ y

sen‘i‘:ence (Labeled + Test)

. Find Aost >
X Similar
sentences

>.”

[Label similarity J

Targets &
Hypothesis

|07



Corpora

e |WSLT 2007 task
® |talian-to-English (IE) & Arabic-to-English (AE) travel tasks

® Each task has train/dev/eval sets

® Baseline: Standard phrase-based SMT based on a
log-linear model. Yields state-of-the-art
performance.

® Results are measured using BLEU score and Phrase
error rate (PER) (papineni et al, AL 2002)
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Approach (1V)

|. Train a CRF on labeled data

2. While not converged do:
2.|. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)
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Approach (V)

|. Train a CRF on labeled data
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Corpora

* Source Domain (labeled): Wall Street Journal
(WS)) section of the Penn Treebank.

* Target Domain:
® QuestionBank: 4000 labeled sentences

® Penn BioTreebank: 1061 labeled sentences
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Graph Construction: Question Bank

|0 million questions collected
from anonymized Internet
Search Queries

Labels are not used
during graph
construction

PMI
Statistics

Unlabeled Data

A 4

Similarity Graph
Construction
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Graph Construction: Bio

Labels are not used
during graph
construction

PMI
Statistics

A 4

100,000 sentences chosen
by searching MEDLINE
(Blitzer et al. 2006)

Unlabeled Data

Similarity Graph
Construction
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Baseline (Supervised)

Not the same
_as features used
" using graph
construction

® Features: word identity, suffixes, prefixes &
special character detectors (dashes, digits,
etc.).

® Achieves 97.17% accuracy on WS§]
development set.
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Results

Questions Bio
Baseline 83.8 86.2
Self-training 84.0 87.1
Semi-supervised 86.8 87.6

CRF
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Analysis

Questions

Bio

percentage of unlabeled trigrams not
connected to and any labeled trigram

12.4

46.8

average path length between an unlabeled
trigram and its nearest labeled trigram

%24

224
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Analysis

Sparse
Graph

Questions

Bio

percentage of unlabeled trigrams not
connected to and any labeled trigram

12.4

46.8

average path length between an unlabeled
trigram and its nearest labeled trigram

%24

224
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Analysis

® Pros
® |nductive

® Produces a CRF (standard CRF inference
infrastructure may be used)

® |ssues
® Graph construction

® Graph is not integrated with CRF training
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Qutline

® Motivation

Text Categorization

e Graph Construction [Phone Classification
Dialog Act Tagging

® |nference Methods

® Scalability eging
ultiLingual POS Tagging
® Applications Il [Das & Petrov, ACL 201 I]

® Conclusion & Future Work
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Motivation

* Supervised POS taggers for English have accuracies
in the high 90’s for most domains
* By comparison taggers in other languages are not as
accurate

* Performance ranges from between 60 - 80%

Transfer
i ) Knowledge ( A
Hodelin Model in
resource-rich
language (e.g., resource-poor
English) language
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Cross-Lingual Projection
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Cross-Lingual Projection

96% Accuracy l

DET NOUN ADP NOUN VERB ADJ .
The food at Google is good .

\ 1

Das Essen ist qgut bei Google .

Automatic alignments from translation data
(available for more than 50 languages)

|34



Cross-Lingual Projection

DET NOUN ADP NOUN VERB ADJ
The food at Google is good

VL

Das Essen i gut bei Google '
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Cross-Lingual Projection

NOUN DET
food The
Essen Das
ADJ] ISt
good gut
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Cross-Lingual Projection

VERB
S

NOUN DET
food \ _The
Essen Das
ADJ ~_ ist —
good "Gyt bag of alignments
bei Google
. |
ADP

Google
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Cross-Lingual Projection
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Cross-Lingual Projection

NOUN PRON DET ,
ADV more alignments!
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Cross-Lingual Projection Results

Danish | Dutch | German | Greek | Italian [Portuguese | Spanish | Swedish | Average
et | 69.1 | 651 | 813 | 718 | 681 | 784 | 802 | 70.1 | 73.0
137 Feature-HMM [Berg-Kirkpatrick, NAACL 2010]




Cross-Lingual Projection Results

Danish | Dutch | German | Greek | Italian [Portuguese | Spanish | Swedish | Average

Feature-
HMM 69.1 65.1 81.3 71.8 | 68.1 78.4 80.2 70.1 73.0

Direct
Projection

73.6 | 77.0 | 83.2 | 79.3 | 79.7 | 82.6 80.1 | 74.7 | 78.8

137 Feature-HMM [Berg-Kirkpatrick, NAACL 2010]
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Results

Danish | Dutch | German | Greek | ltalian | Portugese | Spanish | Swedish | Average

Feature-
HMM 69.1 65.1 81.3 71.8 68.1 78.4 80.2 70.1 73.0

et | 736 | 77.0 | 83.2 | 793 | 797 | 826 | 80.1 | 747 | 788

Projection
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Results

Danish | Dutch | German | Greek | ltalian | Portugese | Spanish | Swedish | Average

Feature-
HMM 69.1 65.1 81.3 71.8 68.1 78.4 80.2 70.1 73.0

et | 736 | 77.0 | 83.2 | 793 | 797 | 826 | 80.1 | 747 | 788

Projection

Graph-
based 83.2 | 795 | 828 | 825 | 86.8 | 87.9 84.2 | 80.5 | 834

Projection

oo 969 | 949 | 982 | 97.8 | 958 | 972 | 968 | 948 | 966
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When to use Graph-based SSL
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® When input data itself is a graph (relational data)

® or, when the data is expected to lie on a manifold

® MAD, Quadratic Criteria (QC)

® when labels are not mutually exclusive

e MADDL: when label similarities are known

® Measure Propagation (MP)

e for probabilistic interpretation

® Manifold Regularization

® for generalization to unseen data (induction)
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Graph-based SSL: Summary

® Provide flexible representation

® for both IID and relational data

® Graph construction can be key

® Scalable: Node Reordering and MapReduce
® Can handle labeled as well as unlabeled data
® Can handle multi class, multi label settings

® Effective in practice

|46



Open Challenges



Open Challenges

® Graph-based SSL for Structured Prediction

® Algorithms: Combining Inductive and graph-based methods

® Applications: Constituency and dependency parsing, Coreference
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Open Challenges

® Graph-based SSL for Structured Prediction

® Algorithms: Combining Inductive and graph-based methods

® Applications: Constituency and dependency parsing, Coreference

® Scalable graph construction, especially with
multi-modal data

® Extensions with other loss functions, sparsity, etc.

® Using side information
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